## Ergodic Theory - Week 11

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

## 1 Spectral theory of measure-preserving systems

- **P1.** Let  $(X, \mathcal{B}, \mu, T)$  be a measure preserving system and let  $f \in L^2(X)$  be an eigenfunction with eigenvalue  $e(\alpha)$  for some  $\alpha \in [0, 1)$ . Calculate the spectral measure  $\mu_f$  of f.
- **P2.** Find an eigenfunction and a weak-mixing function for the system  $(\mathbb{T}^2, \mathcal{B}(\mathbb{T}^2), m_{\mathbb{T}^2}, T)$ , where  $T(x,y)=(x+\alpha,x+y)$ , for some  $\alpha \in [0,1)$ . Do the same for the system on the same space but with the map  $S(x,y)=(x+\alpha,2y)$ .
- **P3.** Given a measure preserving system  $(X, \mathcal{B}, \mu, T)$ , show that for any  $f, g \in L^2(X)$  with f weak-mixing,  $f \otimes g \in L^2(X \times X)$  is weak-mixing.
- **P4.** Let  $(X, \mathcal{B}, \mu, T)$  be a measure preserving system and consider the space

$$\mathcal{H}_c = \overline{\operatorname{span}\{f \in L^2(X) \colon f \text{ is an eigenfunction}\}}.$$

Show that if  $f \in \mathcal{H}_c$ , then the closure of the orbit  $\{U_T^n f : n \in \mathbb{N}\}$  in the  $L^2(X)$ -norm is compact (for this reason, functions in  $\mathcal{H}_c$  are called compact functions or almost-periodic functions).

**Hint**: By completeness, it suffices to show that the orbit  $\{U_T^n f : n \in \mathbb{N}\}$  is totally-bounded: for any  $\varepsilon > 0$ , there exists a finite collection of functions in  $g_1, \ldots, g_m \in L^2(X)$ , such that for every  $n \in \mathbb{N}$ , we have

$$\min_{1 \leq i \leq m} \left\| U_T^n f - g_i \right\|_{L^2(X)} < \varepsilon.$$